Multisymplectic variational integrators and space/time symplecticity

نویسندگان

  • Francois Demoures
  • François Gay-Balmaz
  • Tudor S Ratiu
  • François Demoures
چکیده

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Multisymplectic variational integrators and space/time symplecticity Francois Demoures, François Gay-Balmaz, Tudor S Ratiu

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs

This paper presents a geometric-variational approach to continuous and discrete mechanics and field theories. Using multisymplectic geometry, we show that the existence of the fundamental geometric structures as well as their preservation along solutions can be obtained directly from the variational principle. In particular, we prove that a unique multisymplectic structure is obtained by taking...

متن کامل

Nonstandard Finite Difference Variational Integrators for Multisymplectic PDEs

We use the idea of nonstandard finite difference methods to derive the discrete variational integrators for multisymplectic PDEs. We obtain a nonstandard finite difference variational integrator for linear wave equation with a triangle discretization and two nonstandard finite difference variational integrators for the nonlinear Klein-Gordon equation with a triangle discretization and a square ...

متن کامل

Derivation of the multisymplectic Crank-Nicolson scheme for the nonlinear Schrödinger equation

The Crank–Nicolson scheme as well as its modified schemes is widely used in numerical simulations for the nonlinear Schrödinger equation. In this paper, we prove the multisymplecticity and symplecticity of this scheme. Firstly, we reconstruct the scheme by the concatenating method and present the corresponding discrete multisymplectic conservation law. Based on the discrete variational principl...

متن کامل

Asynchronous Variational Integration of Interaction Potentials for Contact Mechanics

Variational integrators (VIs) [10, 7, 8] are a general class of time integration methods for Hamiltonian systems whose construction guarantees certain highly desirable properties. Instead of directly discretizing the smooth equations of motion of a system, the variational approach asks that we instead step back and discretize the system’s Lagrangian. By analogy to Hamilton’s Least Action Princi...

متن کامل

Geometric Computational Electrodynamics with Variational Integrators and Discrete Differential Forms

In this paper, we develop a structure-preserving discretization of the Lagrangian framework for electromagnetism, combining techniques from variational integrators and discrete differential forms. This leads to a general family of variational, multisymplectic numerical methods for solving Maxwell’s equations that automatically preserve key symmetries and invariants. In doing so, we demonstrate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017